Siting Justification – Midyear Submission

NAU Hydropower Collegiate Competition

- Riley Frisell Evan Higgins Evie Melahn Zonghua Ouyang Trevor Senior Winston Steele
- Faculty Advisor Carson Pete
 - Word Count 1486

Table of Contents

Table o	f Contents	i
1 Intr	roduction	1.1
2 Site	e Selection Process	2.1
2.1	Selection Process and Criteria	2.1
2.2	Final Selected Sites and Next Steps	2.2
3 Ris	sk Identification	3.1
3.1	Approach to Minimizing Risk	3.1
4 Co	nclusion	4.1
5 Re	ferences	5.1
Append	lix A	1
Append	lix B	1

1 Introduction

Converting a non-powered dam (NPD) into a hydroelectric facility requires in-depth research on the power potential, feasibility and risks associated with the site. The Siting Challenge required us to navigate numerous dams before we could finalize our selections: KR Lock and Dam #4 in Kentucky, the Mishawaka Fish Ladder in Indiana, and the Fish Barrier Dam in Washington. Our team, comprised of electrical and mechanical engineering students, focused on identifying key aspects and strategies for risk mitigation related to hydroelectric development. Despite our limited background in environmental and civil engineering theories, our team used our problemsolving skills to effectively research these areas to assess risks and needs. Ultimately, we utilized our industry expert resources and employed weighted risk matrices to refine our choices to the final three sites.

2 Site Selection Process

With the vast landscape of over 80,000 non-powered dams (NPDs) across the United States, our team initially focused our search within Arizona, leveraging proximity to our university to potentially simplify project logistics. Utilizing resources such as the *Oak Ridge National Laboratory's NPD Explorer* [3] and *ArcGIS Pro* [1] [2] [4] [6], we meticulously gathered critical data including high-resolution streamlines, hydraulic head heights, and hazard classifications. Our initial set of criteria directed us toward a group of dams in Arizona that were not suitable for development, and further investigation across the country was required to meet the competition's specified power generation range. The development of risk matrices was pivotal in distilling our options down to three viable sites, selected for their potential to meet the competition's requirements and align with our design objectives.

2.1 Selection Process and Criteria

The initial phase of our investigation, as depicted in the decision matrix of Arizona dams (<u>Table A1, Appendix A</u>), highlighted a critical water shortage in the region, casting doubt on the viability of hydroelectric projects within Arizona. As our expertise deepened, fueled by industry consultations and thorough research, we uncovered discrepancies in the data pertaining to Arizona's potential sites. Such findings necessitated a shift in our focus to types of dams less demanding in civil engineering modifications. Specifically, we targeted concrete and run-of-river dams, leading us to widen our search to states with more favorable hydrological conditions, such as California, Colorado, Washington, Oregon, Idaho, Kentucky, and Indiana. Our decision matrices, showcased in <u>Appendix A (Tables A3-A8)</u>, guided us through a consistent evaluation of various criteria, ensuring a uniform assessment across all potential sites.

To assist in the interpretation of these matrices, we established a legend, detailed in <u>Table A2 of</u> <u>Appendix A</u>, to provide clarity on our scoring approach. Our key criteria included:

• **Potential Energy:** Assessing an NPD's potential energy requires a more thorough understanding of the environment, existing structure, and flows. So, for preliminary estimate, we utilized the potential generation formula below to estimate the maximum potential [5]. This factor received a substantial weight of 25% in our decision matrices due to the competition's focus on generation capacity.

Potential Annual Generation =
$$\frac{Q \times \Delta H \times \eta}{11,800}$$
 MW

Where $\eta=0.85$ assumed efficiency, Q is annual mean flow rate, and ΔH is assumed head.

- <u>Flow Rate:</u> We established a baseline flow rate of 1000 cubic feet per second (cfs), deducing that at least 10 feet of head would be required to generate 1 MW. Sites with higher flow rates were preferred for their increased design flexibility and potential for higher energy output.
- <u>Distance to Existing Power Infrastructure</u>: Recognizing the limitations imposed by remote locations on small hydro projects, we set a cap of 10 miles from existing power infrastructure to preserve project viability, with closer sites deemed more favorable.

- **Dam Ownership Type** The likelihood of collaboration from dam owners was evaluated, with consideration given to the time and financial implications associated with obtaining project consent and initiating development.
- **Potential Environmental Impact:** Scores were derived from recent inspection data of dams, supplemented by additional research to ensure a comprehensive environmental assessment, such as endangered species within the area and current water quality.
- **Dam Integrity:** The integrity of dams was evaluated based on their construction year and the extent of recent refurbishments, ensuring that selected sites maintain structural soundness.
- <u>Dam Type:</u> Conversations with industry experts revealed that certain dam types, notably concrete, offer superior benefits in terms of conversion feasibility and risk mitigation, influencing our selection process.
- <u>Accessibility:</u> The feasibility of ongoing maintenance and operations was closely tied to each site's proximity to necessary infrastructure, with more accessible sites scoring higher.
- <u>Local Community Need:</u> Economic factors, including job availability and the financial health of local communities, were researched at promising sites to determine the potential socio-economic benefits of the project.

Following our research, we engaged in critical discussions about factors that could disqualify certain sites, such as ecological concerns, cultural significance, and regulatory statuses (such as pending or current FERC licenses). These factors were crucial in helping us reduce the number of viable locations to the final three, which were the Kentucky River Lock and Dam #4, the Mishawaka Fish Ladder in Indiana, and the Fish Barrier Dam in Washington. These locations were chosen based on their operational viability and potential for seamless integration.

2.2 Final Selected Sites and Next Steps

Our final sites came down to KR Lock and Dam #4 in Kentucky, Mishawaka Fish Ladder in Indiana, and the Fish Barrier Dam in Washinton due to their feasibility and the positive impact they could have on their respective communities. Unlike Arizona, where water scarcity posed a significant challenge, these regions offer more reliable water sources essential for hydroelectric power generation. With our focus narrowed to these three prospects, our forthcoming actions will delve into a comprehensive feasibility study for each. This will encompass a further evaluation of environmental impacts, construction and operational logistics, amount of watershed, and other site-specific risks. By collating data and consulting with local experts, we will determine the most suitable site for the competition's requirements and proceed to refine our conceptual design.

Our envisioned co-development strategies are carefully designed to augment the unique attributes of each finalist site. At Kentucky's KR Lock and Dam #4, we're exploring a partnership with the nearby Buffalo Trace Distillery to supply renewable energy, complemented by a battery storage system for peak demands, showcasing sustainable industry support. The Fish Barrier Dam in Washington presents an opportunity for pumped hydro storage, leveraging its proximity to the Mayfield Dam to boost efficiency. In Indiana, the Mishawaka site, with its existing fish ladder, inspires us to integrate StreamDiver units, enhancing the natural landscape. This

initiative could align with municipal development goals, offering a blend of tourism and education on renewable energy, thus fostering community engagement and environmental awareness.

3 Risk Identification

In addressing the risks associated with this project, our team placed significant emphasis on early risk analysis to guide our decision-making process. Our objective is to develop a project that not only promises feasible returns to attract investors but also ensures long-term sustainability and supports environmental rehabilitation efforts. To this end, we devised matrices to systematically evaluate and balance these considerations, ensuring the identification of the safest and most cost-effective solutions (refer to <u>Table B1 in Appendix B</u>).

3.1 Approach to Minimizing Risk

Throughout the siting challenge, we diligently updated our research and remained vigilant for potential critical risks, including public protests and government initiatives for river rewilding. Construction and maintenance accessibility was a priority, steering us away from extremely remote locations. Our risk assessment incorporated a comprehensive review of all risk factors, derived from industry interviews and extensive research, to identify viable sites for hydroelectric conversion.

In preparing for future risk evaluations, we delved into the predominant hydroelectric risks at our three chosen sites. Detailed matrices outlining these risks are available in <u>Tables B.2-B.4 in</u> <u>Appendix B.</u> Common challenges across our sites include the management of heavy rainfall, flooding, and natural disasters, necessitating robust emergency planning. Environmental assessments will be conducted to evaluate the impact on protected and invasive species, ensuring the project's harmony with local ecosystems. Moreover, there's potential to employ predictive models to anticipate climatic variations due to global warming, ensuring the resilience of our operations. Proactive strategies will be implemented to manage river debris and trash accumulation, and we will establish safety protocols and maintenance schedules to guarantee consistent power generation. Future design and siting efforts will incorporate these risk mitigation measures to affirm the project's viability.

4 Conclusion

The process of converting a non-powered dam into a hydropower one is an endeavor that demands meticulous research, effective communication, and proficient project management. Our team approached the task with diligence, leveraging various software tools and industry interviews to identify potential sites and assess associated risks. Our next steps involve detailed feasibility studies, incorporating risk assessments and co-development strategies that align with local community and environmental goals. As we refine our designs and engage with stakeholders, our focus remains on ensuring the viability, sustainability, and community integration of our hydroelectric conversion project, poised to contribute to the clean energy landscape.

5 References

[1] "ArcGIS Web Application," ornl.maps.arcgis.com.

https://ornl.maps.arcgis.com/apps/webappviewer/index.html?id=4756decebce4408ba4bc0a0c3d c23a5f (accessed Jan. 27, 2024).

[2] "ArcGIS Pro | 2D and 3D GIS Mapping Software," *Esri.com*, 2019. <u>https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview</u> (accessed Jan. 27, 2024).

[3] Carly H. Hansen, Christopher R. DeRolph, Forest D. Carter, Scott T. DeNeale. 2022. U.S. Non-Powered Dam Characteristics Inventory. HydroSource, Oak Ridge National Laboratory, Oak Ridge, TN. DOI: https://www.doi.org/10.21951/US_NPD_Characteristics/1860464

[4] G. H. Nelson, "Maps to estimate average streamflow and headwater limits for streams in U.S. Army Corps of Engineers, Mobile District, Alabama and adjacent states," U.S. Department of the Interior, U.S. Geological Survey, Mobile, Alabama, 1984.

[5] Potential hydroelectric development at existing Federal Facilities. [Online]. Available: https://www.usbr.gov/power/data/1834/Sec1834_EPA.pdf [Accessed Oct. 28, 2023].

[6] The U.S. Department of Energy, "An Assessment of Energy Potential at Non-Powered Dams in the United States", Oak Ridge National Laboratory, April 2012. [online]. Available: https://www.energy.gov/eere/water/articles/assessment-energy-potential-non-powered-damsunited-states. [Accessed: 25/Oct/2023].

Appendix A

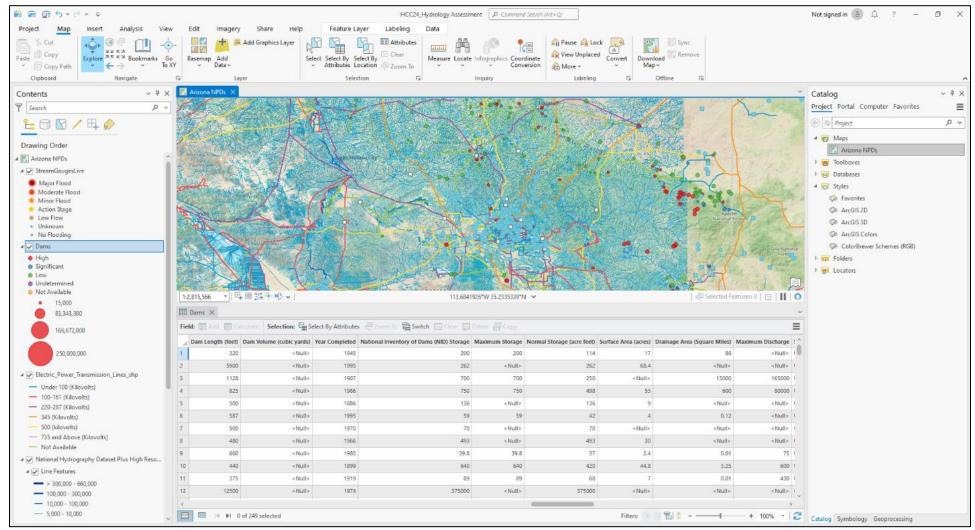


Figure A1: ArcGIS software used for data analysis and geographical data.

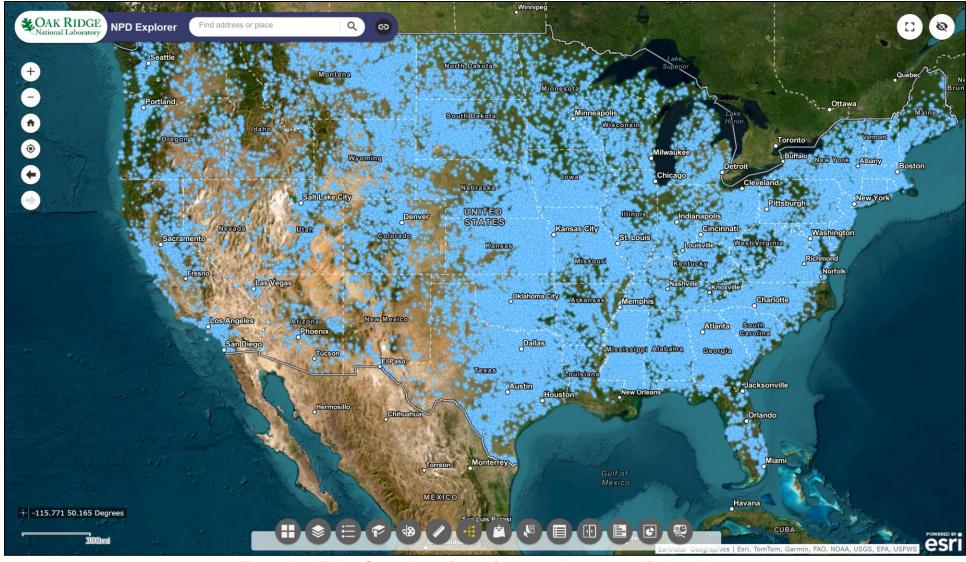


Figure A2: NPDamCat online software for accessing site-specific dam data.

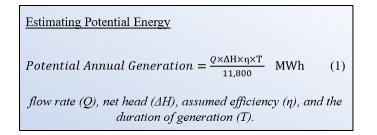


Figure A3: Estimated Generation Equation from "An Assessment of Energy Potential at Non-Powered Dams in the United States".

Table A1: Initial dam selection for Arizona. Matrix was modified during further investigation into other dams.

Criterion	Moight	Bartle	tt Dam	Granite Ree	ef Diversion	Horsesh	noe Dam	Palo Verde	Diversion
Criterion	Weight	Score out of 100	Weighted Score						
1. Potential Energy	5%	70	3.5	40	2	65	3.25	95	4.75
2. Flow Rate	8%	35	2.8	72	5.76	35	2.8	100	8
3. Distance to Existing Infrastructure (transmission lines/substations)	15%	57	8.55	88	13.2	5	0.75	62	9.3
4. Distance to Alternative Energy Sources	7%	30	2.1	38	2.66	0	0	24	1.68
5. Distance to Nearest City	5%	33	1.65	70	3.5	38	1.9	88	4.4
6. Amount of Watershed	7%	43	3.01	38	2.66	7	0.49	35	2.45
7. Dam Ownership Type	7%	80	5.6	85	5.95	75	5.25	80	5.6
8. Potential Environmental Impact	10%	60	6	75	7.5	35	3.5	65	6.5
9. Dam Integrity	4%	33	1.32	23	0.92	31	1.24	40	1.6
10. Cost of Development/Economic Viability	10%	30	3	85	8.5	3	0.3	60	6
11. Water Storage Capacity	5%	90	4.5	65	3.25	83	4.15	68	3.4
12. Availability of Historical Flow Data	3%	75	2.25	73	2.19	70	2.1	69	2.07
13. Accessibility (ease of access for construction and maintenance)	5%	30	1.5	68	3.4	35	1.75	54	2.7
14. Local Community Support	5%	43	2.15	76	3.8	22	1.1	55	2.75
15. Technical Feasibility	4%	38	1.52	63	2.52	43	1.72	72	2.88
Total	1		49.45		67.81		30.3		64.08
Relative Rank			1		2		3		3

Table A2: Point scoring legend for revised matrices for remaining states.

			Soring Legend (0-100 point)
Criterion	Weight		
		given score	Кеу
1. Potential Energy	25%	0-100	1 MW =10 pts
2. Flow Rate	10%	0-100	1000-2500+ cfs (5 pts per 1000 cfs
3. Distance to Existing Power Infrastructure	10%	0-100	20+ -> 0 miles away (-5pts per mile away)
4. Dam Ownership Type	5%	0-100	Hydropower developers = 100, private companies = 90, army corps = 80, Federal = 70, state = 60, municiplaities = 50, join ventures = 40, coops = 30, beuro of reclemation = 20, other =10
5. Potential Environmental Impact (risk)	10%	0-100	risk level 1 = 100, 2 = 70, 3 = 40, else = 10
6. Dam Integrity (age)	12%	0-100	for each year old it is -1 pt
7. dam type	13%	0-100	concrete = 100, gravity or arch = 50, rock = 70, earth =30
8. Accessibility (access for construction and maintenance)	5%	0-100	for every mile away -5 pts
9. Local Community Need	10%	0-100	determine from research; include economic indices and local tribes/communities nearby
Total	100%		
Relative Rank			

		KR Lock	& Dam #4	Willian	ns Dam	Mishawaka	Fish Ladder		
Criterion	Weight	KY0	3016	INO	0805	IN00806			
		Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score		
1. Potential Energy	25%	30	7.5	15	3.75	15	3.75		
2. Flow Rate	10%	90	9	80	8	75	7.5		
3. Distance to Existing Power Infrastructure	10%	30	3	20	2	60	6		
4. Dam Ownership Type	5%	60	3	30	1.5	50	2.5		
5. Potential Environmental Impact (risk)	10%	45	4.5	0	0	90	9		
6. Dam Integrity (age)	12%	60	7.2	40	4.8	80	9.6		
7. Dam Type	13%	80	10.4	100	13	75	9.75		
8. Accessibility (access for construction and maintenance)	5%	100	5	35	1.75	100	5		
9. Local Community Need	10%	80	8	5	0.5	90	9		
Total	100%		57.6		35.3		62.1		
Relative Rank									

Table A3: Kentucky and Indiana dam selection matrix.

Table A4: Colorado dam selection matrix.

Criterion	Woight	Lake Cata	mount Dam	Ritscha	ard Dam	Windy G	ap Dam	Trinidad Dam Score out of 100 Weighted Score		
Citterion	weight	Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score	
1. Potential Energy	20%	25	5	57	11.4	15	3	54	10.8	
2. Flow Rate	10%	3	0.3	1.2	0.12	4	0.4	1.3	0.13	
3. Distance to Existing Infrastructure (transmission lines/substations)	10%	59	5.9	100	10	100	10	97	9.7	
4. Dam Ownership Type	5%	60	3	60	3	60	3	70	3.5	
5. Potential Environmental Impact	10%	70	7	40	4	70	7	40	4	
6. Dam Integrity (age)	12%	29	3.48	10	1.2	44	5.28	36	4.32	
7. Dam Structure type	13%	85	11.05	30	3.9	30	3.9	30	3.9	
8. Accessibility (access for construction and maintenance)	10%	60	6	95	9.5	95	9.5	100	10	
9. Local community need	10%	30	3	25	2.5	35	3.5	40	4	
Total	100%		44.73		45.62		45.58		50.35	
Relative Rank					3		2		1	

Table A5: California dam selection matrix.

			idge Diversion	Anderson (Cottonwood	Healdsburg	Recreation	Russian River No. 1		
Criterion	Weight		.01461	CA0		CA00		CA00849		
		Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score	
1. Potential Energy	20%	30	6	90	18	40	8	45	9	
2. Flow Rate	10%	6	0.6	43	4.3	13	1.3	13	1.3	
3. Distance to Existing Power Infrastructure	10%	100	10	60	6	45	4.5	70	7	
4. Dam Ownership Type	5%	80	4	80	4	60	3	60	3	
5. Potential Environmental Impact (risk)	10%	70	7	60	6	100	10	60	6	
6. Dam Integrity (age)	12%	82	9.84	0	0	29	3.48	39	4.68	
7. Dam Type	13%	20	2.6	40	5.2	100	13	50	6.5	
8. Accessibility (access for construction and maintenance)	10%	100	10	60	6	45	4.5	90	9	
9. Local Community Need	10%	40	4	25	2.5	50	5	40	4	
Total	1		54.04		52		52.78		50.48	
Relative Rank			3		1				2	

Table A6: Washington dam selection matrix.

- # ·		Fish Bar	rier Dam	Barrie	er Dam	Howard A.	Hanson Dam	Hiram M. Chitten Den locks & Dam		Zosel Dam (osoyoos)	
Criterion	Weight	WA0	0769	WA00555		WA00298		WA00301		WA00556	
		Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score
1. Potential Energy	25%	25.8	6.45	40	10	100	25	100	25	50	12.5
2. Flow Rate	10%	13.5	1.35	32.9	3.29	5.5	0.55	7.5	0.75	3	4.05
3. Distance to Existing Power Infrastructure	10%	100	10	96	9.6	93	9.3	100	10	95	9.5
4. Dam Ownership Type	5%	50	2.5	50	2.5	70	3.5	70	3.5	60	3
5. Potential Environmental Impact (risk)	10%	50	5	50	5	50	5	100	10	50	5
6. Dam Integrity (age)	12%	37	4.44	46	5.52	39	4.68	0	0	63	7.56
7. Dam Tyoe	13%	100	13	100	13	30	3.9	50	6.5	50	6.5
8. Accessibility (access for construction and maintenance)	5%	100	5	100	5	100	5	100	5	100	5
9. Local Community Need	10%	25	2.5	50	5	100	10	75	7.5	10	1
Total	100%		50.24		58.91		66.93		68.25		54.11
Relative Rank											
				•			×				

Table A7: Idaho dam selection matrix.

		Priest	Lake	Payett	e Lake	Boise Diversion D	am (cant develop)	Murtaugh Lake Dam	
Criterion	Weight	ID00318		ID00244		ID00281		ID00156	
		Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score
1. Potential Energy	25%	0	0	0	0	81.6	20.4	100	25
2. Flow Rate	10%	0	0	0	0	14.2	1.42	38	3.8
3. Distance to Existing Power Infrastructure	10%	0	0	0	0	90.6	9.06	92	9.2
4. Dam Ownership Type	5%	0	0	0	0	70	3.5	90	4.5
5. Potential Environmental Impact (risk)	10%	0	0	0	0		0	40	4
6. Dam Integrity (age)	12%	0	0	0	0		0	0	0
7. Dam Type	13%	0	0	0	0		0	30	3.9
8. Accessibility (access for construction and maintenance)	5%	0	0	0	0		0	100	5
9. Local Community Need	10%	50	5	75	7.5	100	10	25	2.5
Total	100%		5		7.5		44.38	57.9	
Relative Rank									

Table A8: Oregon dam selection matrix.

		Crane Prairie Da	m Do Not Develop	Winch	nester	Blue Riv	ver Dam	Wickiup		Fern Ridge Dam	
Criterion	Weight	OR00279		OR00263		OR00013		OR10022		OR00016	
		Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score
1. Potential Energy	25%	0	0	70	17.5	64	16	23.2	5.8	11.7	2.925
2. Flow Rate	10%	0	0	21.885	2.1885	2.5	0.25	2.5	0.25	2.5	0.25
3. Distance to Existing Power Infrastructure	10%	0	0	100	10	88.3	8.83	50	5	100	10
4. Dam Ownership Type	5%	0	0	30	1.5	70	3.5	70	3.5	70	3.5
5. Potential Environmental Impact (risk)	10%	0	0	70	7	70	7	80	8	75	7.5
6. Dam Integrity (age)	12%	0	0	0	0	45	5.4	23	2.76	16	1.92
7. Dam Type	13%	0	0	30	3.9	30	3.9	20	2.6	30	3.9
8. Accessibility (access for construction and maintenance)	5%	0	0	100	5	93.25	4.6625	50	2.5	100	5
9. Local Community Need	10%	0	0	50	5	100	10	25	2.5	75	7.5
Total	100%		0		52.0885		59.5425		32.91		42.495
Relative Rank											

Appendix B

		Siting Pro		0								pact)			
Feasibility Risk	Construction a	Ind Civil Impact		and Grie			nichal/oth			chanical li			romental I	mpact	RISK SCORE
Potential Energy (20	-	act, the larger the to impliment			m the more d and earn \$	While Ia	arger, it will I more upke	ikely require eep	Mor	e size more	impact	-	e larger our the possibl		Max individual 60
MW max)	Time Cost 5	Risk 5 3	Time	Cost	Risk 1 1	Time	Cost 3	Risk 3 3	Time	Cost	Risk 4 4	Time 4	Cost	Risk 1 4	Total Score 48
Flow Rate (20,000 cfs	-	te means more il techniques	-	f flow resu for implem	entation and	Will r	equire more solution		More	stress on s	ystems.	Less imp	act if consta	t run of river	Max individual 60
max)	Time Cost	Risk 5 5	Time 1	Cost	Risk	Time	Cost	Risk	Time	Cost	Risk 5 3	Time 2	Cost	Risk	Total Score 53
Distance to existing		on and operation d expensive	Loss i	n transmis effeciencie			er from powe cult to repair		-	shut off/on ti way, harder			s harder for on in case (Max individual 60
power infrastructure	Time Cost	Risk	Time 3	Cost	Risk 4 2	Time	Cost 3	Risk 3 3	Time	Cost	Risk	Time	Cost	Risk	Total Score 49
Ourses bis Tass	-	uction feasable	may hav	e to pay/re	nt the land		Not muc	h		f operation, i n power is ge		Imp	pose or don	'trisk	Max individual 60
Ownership Type	Time Cost	Risk	Time 2	Cost	Risk	Time	Cost	Risk	Time	Cost	Risk 2 2	Time	Cost	Risk 2 1	Total Score 33
O	Community must need/see Most places need renewbale impact to allow power with government initiatives					munity may (nstruction m			n impact on r	_	Can decid	-	s built or not;	Max individual 60	
Community Need	Time Cost	Risk 3 3	Time	Cost	Risk	Time	Cost	Risk	Time	Cost	Risk	Time	Cost	Risk	Total Score 35
	-	es operations	, , ,	Green energy yay!			increase di chnichal so	fficulty of		s have to be romental su			Obviously		Max individual 60
Environmental	Time Cost	Risk	Time	Cost	Risk	Time	Cost	Risk	Time	Cost	Risk	Time	Cost	Risk	Total Score
Dam Integrity (time		4 4 more upgrades uired		ich impact powerhou:		Techn	3 ichal solutio require	ons may be		n impact on r	+ Z nechanichal	Large con	5 Isqeunces f les the older		47 Max individual 60
since last refurbishment	Time Cost	Risk 3 3	Time	Cost	Risk 2 1	Time	Cost 3	Risk 3 1	Time	Cost	Risk	Time	Cost	Risk	Total Score 30
Dam Type	_	n cost and time	1	lot Applica	-	May rec	-	al solutions	Not much	n impact on r	nechanichal	Earth	dams requi pment and i	re more	Max individual 60
Dani Type	Time Cost	Risk 5 4	Time I 1	Cost	Risk 1 1	Time	Cost 3	Risk 2	Time	Cost	Risk 2 1	Time	Cost	Risk 3 4	Total Score 40
Accessability	-	5 5 4 1 1 1 Will increase cost and effecincy Expensive infastructure				Not much			Not much impact on mechanichal						Max individual
Accessability	Time Cost	Risk 4 2	Time 2 3	Cost	Risk 4 2	Time	Cost 2	Risk 2 1	Time	Cost	Risk 2 2 2	Time	Cost	Risk 2 4	Total Score 39

Table B1: Siting Risk Matrix for feasibility and decision matrix considerations

Table B2: Washington Dam risk ID

		ington Dar		RISK			
Washington Risk	Po	ssible Imp	act	SCORE			
	there are a species in f	multitude of the state	protected	Max individual			
Protected Species				30			
	Chance	Cost	Risk	Total Score			
	6	8	5	19			
	washingtor plate	ectonic	Max individual				
Earthquakes			-	30			
	Chance	Cost	Risk	Total Score			
	8	10	10	28			
	storm and snowmealt season in the PNW						
Floods				30			
	Chance	Cost	Risk	Total Score			
	10	5	8	23			
	erosion fro	m nearby m	ountains	Max individual			
Sedimentation		30					
	Chance	Cost	Risk	Total Score			
	7	5	7	19			
	the US has wildfires	Max individual					
Wildfires			1	30			
	Chance	Cost	Risk	Total Score			
	6	7	6	19			
	happens fr	om heavy fi	oods	Max individual			
Debris Flow		-		30			
	Chance	Cost	Risk	Total Score			
	5	4	5	14			
	possiblity			Max individual			
Invasive Species	,,			30			
	Chance	Cost	Risk	Total Score			
	4	8	3	15			
	and Blacks			Max individual			
Structural Failure	not likely			30			
	Chance	Cost	Risk	Total Score			
	1	10	4	12			

Table B3: Kentucky Dam risk ID

Kentucky Risk	Po	ssible Imp	act	RISK SCORE
	Tornadoes	and severe	winds	Max individual
Natural Disasters	Tornadoes		Winds	30
Hatara Disastore	Chance	Cost	Risk	Total Score
	6	8	7	21
	Harsh wea	ther and err	osion of	Max individual
Erosion	embankmer			30
	Chance	Cost	Risk	Total Score
	6	6	6	18
	Storm and	flood seaso	n	Max individual
Floods				30
	Chance	Cost	Risk	Total Score
	10	6	8	24
	Build up fro agriculture	m erosion a runoff	nd	Max individual
Sedimentation				30
-	Chance 6	Cost 5	Risk 7	Total Score 18
	Agriculture	Max individual		
Water Quality	posed to da		30	
	Chance	Cost	Risk	Total Score
	6	7	6	19
-	Happens fr	om heavy fl	oods	Max individual
Debris Flow		-		30
-	Chance	Cost	Risk	Total Score
	5	4	5	14
-	Invasive a	sian carp an	d more	Max individual
Invasive Species		-		30
-	Chance	Cost	Risk	Total Score
	4	8	3	15 Max individual
Structural Failure	Not likely			30
]	Chance	Cost	Risk	Total Score
	1	10	1	12

Table B4: Indiana dam risk ID

Indiana Risk	Possible Impact			RISK SCORE
Natural Disasters	Tornadoes and severe winds			Max individual
				30 Total Score
	Chance 6	8		21
Erosion	Harsh weather			Max individual
				30
	Chance	Cost	Risk	Total Score
	5	5	5	15
Floods	Storm and flood season			Max individual
				30
	Chance	Cost	Risk	Total Score
	10	5	8	23
Sedimentation	Build up from erosion			Max individual
				30
	Chance	Cost	Risk	Total Score
	6	5	7	18
Water Quality	Agriculture runoff and other risks posed to dam water			Max individual
				30
	Chance	Cost	Risk	Total Score
Debris Flow	6	7	6	19 Max individual
	Happens from heavy floods			Max Individual
	Chance	Cost	Risk	Total Score
	5	4	5	14
Invasive Species	Zahra muo	Max individual		
	Zebra muscles and invasive carp			30
	Chance	Cost	Risk	Total Score
	4	8	3	15
Structural Failure	not likely			Max individual
		0	D . 1	30
	Chance 1	Cost 10	Risk 1	Total Score 12